Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474467

RESUMEN

Isoflavones, belonging to polyphenolic compounds, show structural similarity to natural estrogens, and in this context, they have been extensively studied. Some of them are also applied as cosmetic additives; however, little is known regarding their effects on skin cells. In this investigation, common isoflavones, including genistein, daidzein, glycitein, formononetin, and biochanin A, as well as coumestrol, were evaluated for antioxidant activity and their impact on human skin fibroblasts and keratinocytes. Antioxidant effects were assessed using DPPH, ABTS, and FRAP tests, and the ability to scavenge reactive oxygen species (ROS) was tested in cells with H2O2-provoked oxidative stress. The impact on the activity of antioxidant enzymes (SOD, CAT, GSH) and lipid peroxidation (MDA) was also explored. As shown by Alamar Blue and neutral red uptake assays, the compounds were not toxic within the tested concentration range, and formononetin and coumestrol even demonstrated a stimulatory effect on cells. Coumestrol and biochanin A demonstrated significant antioxidative potential, leading to a significant decrease in ROS in the cells stimulated by H2O2. Furthermore, they influenced enzyme activity, preventing depletion during induced oxidative stress, and also reduced MDA levels, demonstrating protection against lipid peroxidation. In turn, genistein, daidzein, and glycitein exhibited low antioxidant capacity.


Asunto(s)
Genisteína , Isoflavonas , Humanos , Genisteína/farmacología , Cumestrol , Especies Reactivas de Oxígeno , Fitoestrógenos , Antioxidantes , Peróxido de Hidrógeno , Isoflavonas/química , Estrés Oxidativo , Queratinocitos , Fibroblastos
2.
Aquat Toxicol ; 261: 106639, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37515925

RESUMEN

In the last two decades, much controversy has grown over the use of soybean products in aquafeeds, especially for carnivorous fish like sturgeons. One point of discussion is the effect of soybean phytoestrogens on fish health. There are many aspects of phytoestrogen utilization in aquafeeds, therefore, the aim of this study is to verify if common legume phytoestrogens can affect juvenile cultured sturgeon erythrocyte and hepatocyte genotoxicity and cause liver pathology. Russian sturgeons were fed from 100 till 365 dph1 with daidzein, genistein, and coumestrol supplemented diets in concentrations: 10, 0.05 and 0.001 g kg-1 of feed, respectively. The SCGE2 method combined with qPCR of three genes involved in DNA repair and genome maintenance, namely cyp1a1, gaad45a and p53 were analyzed. The results were compared with histopathological evaluation of liver tissue. In fish fed with coumestrol supplemented diet, DNA strand damage was the highest in both erythrocytes and hepatocytes, however, simultaneously the lowest level of oxidative DNA damage was found. Additionally, slightly elevated expression of the p53 gene was observed along with a decreased number of apoptotic hepatocytes, which suggests that low concentration of coumestrol may support DNA repair mechanisms in the liver. Although, daidzein showed a preventive effect only against fibrosis. Isoflavones did not show a significant effect on DNA damage in studied cells. Genistein was found to increase macro- and microvesicular steatosis, portal hepatitis and fibrosis, indicating its negative role in the development of liver injuries. Daidzein alleviated some sturgeon liver damage, especially macrovesicular steatosis and interface hepatitis. However, it increased hepatocyte apoptosis, which may suggest daidzein potentially inducing liver injury, though not manifested by other histopathological lesions. Therefore, it can be concluded that at given concentrations, the tested phytoestrogens did not show clearly hepatoprotective effect in sturgeons.


Asunto(s)
Estrógenos no Esteroides , Contaminantes Químicos del Agua , Animales , Fitoestrógenos/toxicidad , Genisteína/toxicidad , Genisteína/metabolismo , Cumestrol/toxicidad , Estrógenos no Esteroides/metabolismo , Estrógenos no Esteroides/farmacología , Contaminantes Químicos del Agua/toxicidad , Glycine max , Dieta , Fibrosis
3.
Reproduction ; 166(1): 1-11, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37078791

RESUMEN

In brief: Healthy development of the placenta is dependent on trophoblast cell migration and reduced oxidative stress presence. This article describes how a phytoestrogen found in spinach and soy causes impaired placental development during pregnancy. Abstract: Although vegetarianism has grown in popularity, especially among pregnant women, the effects of phytoestrogens in placentation lack understanding. Factors such as cellular oxidative stress and hypoxia and external factors including cigarette smoke, phytoestrogens, and dietary supplements can regulate placental development. The isoflavone phytoestrogen coumestrol was identified in spinach and soy and was found to not cross the fetal-placental barrier. Since coumestrol could be a valuable supplement or potent toxin during pregnancy, we sought to examine its role in trophoblast cell function and placentation in murine pregnancy. After treating trophoblast cells (HTR8/SVneo) with coumestrol and performing an RNA microarray, we determined 3079 genes were significantly changed with the top differentially changed pathways related to the oxidative stress response, cell cycle regulation, cell migration, and angiogenesis. Upon treatment with coumestrol, trophoblast cells exhibited reduced migration and proliferation. Additionally, we observed increased reactive oxygen species accumulation with coumestrol administration. We then examined the role of coumestrol within an in vivo pregnancy by treating wildtype pregnant mice with coumestrol or vehicle from day 0 to 12.5 of gestation. Upon euthanasia, fetal and placental weights were significantly decreased in coumestrol-treated animals with the placenta exhibiting a proportional decrease with no obvious changes in morphology. Therefore, we conclude that coumestrol impairs trophoblast cell migration and proliferation, causes accumulation of reactive oxygen species, and reduces fetal and placental weights in murine pregnancy.


Asunto(s)
Cumestrol , Placenta , Embarazo , Femenino , Ratones , Humanos , Animales , Placenta/metabolismo , Cumestrol/farmacología , Cumestrol/metabolismo , Fitoestrógenos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Placentación/fisiología , Trofoblastos/metabolismo , Estrés Oxidativo
4.
Arch Biochem Biophys ; 740: 109583, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36967033

RESUMEN

The propensity of breast cancer to preferentially metastasize to the skeleton is well known. Once established in bone metastatic breast cancers have a poor prognosis due to their ability to promote extensive bone loss which augments tumor burden. Unfortunately, current anti-resorptive therapies for skeletal metastasis are typically prescribed after secondary tumors have formed and are palliative in nature. One group of compounds with the potential to reduce both tumor burden and osteolysis are phytoestrogens (PE), but the mechanisms mediating a beneficial effect are unclear. Therefore, the current study examined the effect of genistein and coumestrol alone or in combination on breast cancer cell number, expression of mediators of preferential skeletal metastasis, bone matrix attachment and tumor-induced osteoclast formation. Results showed that genistein and coumestrol significantly reduced viable cell number in an estrogen receptor dependent manner (p < 0.05), whereas combinations of PE had no effect. In addition, genistein and coumestrol significantly reduced expression of genes driving epithelial to mesenchymal transition (snail), bone attachment (CXCR4 and integrin αV) and osteolysis (PTHrP and TNF-α). In keeping with this genistein and coumestrol significantly suppressed attachment of breast cancer cells to bone matrix and inhibited tumor and RANKL-induced osteoclast formation. Our data suggests that phytoestrogens not only decrease breast cancer cell viability but also antagonize essential tumor bone interactions that establish and drive the progression of skeletal metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Osteólisis , Humanos , Femenino , Genisteína/farmacología , Cumestrol/farmacología , Fitoestrógenos/farmacología , Neoplasias de la Mama/patología , Células MCF-7 , Osteogénesis , Transición Epitelial-Mesenquimal , Supervivencia Celular , Matriz Ósea/patología , Neoplasias Óseas/tratamiento farmacológico
5.
Nutrients ; 15(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36839308

RESUMEN

Coumestrol, a phytoestrogen compound found in various plants, has been shown to act as a potent estrogen receptor (ER) agonist, with a higher binding affinity for ERß than for ERα. However, there is currently limited information regarding its beneficial effects in postmenopausal disorders and its ER-mediated mechanisms. Herein, we investigated the effects of coumestrol (subcutaneous or oral treatment) on metabolic dysfunction in ovariectomized (OVX) mice fed a high-fat diet, in comparison with the effects of 17ß-estradiol (E2) replacement. Coumestrol was administered daily at a dose of 5 mg/kg for 10 weeks. Coumestrol treatment through the subcutaneous route stimulated uterine growth in OVX mice at a level lower than that of E2. E2 and coumestrol prevented body fat accumulation, adipocyte hypertrophy, and hepatic steatosis, and enhanced voluntary physical activity. Coumestrol showed estrogen-mimetic effects in the regulation of the protein expressions involved in browning of white fat and insulin signaling, including increased hepatic expression of fibroblast growth factor 21. Importantly, the metabolic effects of coumestrol (oral administration at 10 mg/kg for 7 weeks) were mostly abolished following co-treatment with an ERß-selective antagonist but not with an ERα-selective antagonist, indicating that the metabolic actions of coumestrol in OVX mice are primarily mediated by ERß. These findings provide important insights into the beneficial effects of coumestrol as a phytoestrogen supplement for the prevention and treatment of postmenopausal symptoms.


Asunto(s)
Cumestrol , Receptor alfa de Estrógeno , Animales , Femenino , Ratones , Cumestrol/farmacología , Estradiol/farmacología , Receptor beta de Estrógeno , Ovariectomía , Fitoestrógenos , Receptores de Estrógenos
6.
Nutrients ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145197

RESUMEN

Pueraria lobata leaves contain a variety of phytoestrogens, including flavonoids, isoflavonoids, and coumestan derivatives. In this study, we aimed to identify the active ingredients of P. lobata leaves and to elucidate their function in monoamine oxidase (MAO) activation and Aß self-aggregation using in vitro and in silico approaches. To the best of our knowledge, this is the first study to elucidate coumestrol as a selective and competitive MAO-A inhibitor. We identified that coumestrol, a coumestan-derivative, exhibited a selective inhibitory effect against MAO-A (IC50 = 1.99 ± 0.68 µM), a key target protein for depression. In a kinetics analysis with 0.5 µg MAO-A, 40-160 µM substrate, and 25 °C reaction conditions, coumestrol acts as a competitive MAO-A inhibitor with an inhibition constant of 1.32 µM. During an in silico molecular docking analysis, coumestrol formed hydrogen bonds with FAD and pi-pi bonds with hydrophobic residues at the active site of the enzyme. Moreover, based on thioflavin-T-based fluorometric assays, we elucidated that coumestrol effectively prevented self-aggregation of amyloid beta (Aß), which induces an inflammatory response in the central nervous system (CNS) and is a major cause of Alzheimer's disease (AD). Therefore, coumestrol could be used as a CNS drug to prevent diseases such as depression and AD by the inhibition of MAO-A and Aß self-aggregation.


Asunto(s)
Enfermedad de Alzheimer , Monoaminooxidasa , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides , Cumestrol/farmacología , Flavina-Adenina Dinucleótido , Flavonoides , Humanos , Simulación del Acoplamiento Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Fitoestrógenos/farmacología , Relación Estructura-Actividad
7.
Int J Mol Sci ; 22(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062716

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disorder, affecting around 25% of the population worldwide. It is a complex disease spectrum, closely linked with other conditions such as obesity, insulin resistance, type 2 diabetes mellitus, and metabolic syndrome, which may increase liver-related mortality. In light of this, numerous efforts have been carried out in recent years in order to clarify its pathogenesis and create new prevention strategies. Currently, the essential role of environmental pollutants in NAFLD development is recognized. Particularly, endocrine-disrupting chemicals (EDCs) have a notable influence. EDCs can be classified as natural (phytoestrogens, genistein, and coumestrol) or synthetic, and the latter ones can be further subdivided into industrial (dioxins, polychlorinated biphenyls, and alkylphenols), agricultural (pesticides, insecticides, herbicides, and fungicides), residential (phthalates, polybrominated biphenyls, and bisphenol A), and pharmaceutical (parabens). Several experimental models have proposed a mechanism involving this group of substances with the disruption of hepatic metabolism, which promotes NAFLD. These include an imbalance between lipid influx/efflux in the liver, mitochondrial dysfunction, liver inflammation, and epigenetic reprogramming. It can be concluded that exposure to EDCs might play a crucial role in NAFLD initiation and evolution. However, further investigations supporting these effects in humans are required.


Asunto(s)
Disruptores Endocrinos/toxicidad , Contaminantes Ambientales/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Compuestos de Bencidrilo/toxicidad , Cumestrol/toxicidad , Dioxinas/toxicidad , Disruptores Endocrinos/clasificación , Genisteína/toxicidad , Humanos , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/patología , Fenoles/toxicidad , Fitoestrógenos/toxicidad , Bifenilos Policlorados/toxicidad
8.
Aging (Albany NY) ; 13(4): 5342-5357, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33536350

RESUMEN

Diabetes-induced oxidative stress is vital in initiating neuronal damage in the diabetic retina, leading to diabetic retinopathy (DR). This study investigates the possible effects of coumestrol (CMS) on streptozotocin (STZ)-induced DR. First, we established a rat model of DR by STZ injection and a cell model involving high-glucose (HG) exposure of human retinal microvascular endothelial cells (hRMECs). We characterized the expression patterns of oxidative stress indicators, pro-inflammatory cytokines, and pro-apoptotic proteins in hRMECs. Polymerase chain reaction showed sirtuin 1 (SIRT1) to be poorly expressed in the retinal tissues of STZ-treated rats and HG-exposed hRMECs, but its expression was upregulated upon treatment with CMS treatment. Furthermore, CMS treatment attenuated the STZ-induced pathologies such as oxidative stress, inflammation, and cell apoptosis. Consistent with the in vivo results, CMS activated the expression of SIRT1, thereby inhibiting oxidative stress, inflammation, and apoptosis of HG-treated hRMECs. From these findings, we concluded that CMS ameliorated DR by inhibiting inflammation, apoptosis and oxidative stress through activation of SIRT1.


Asunto(s)
Apoptosis/efectos de los fármacos , Cumestrol/farmacología , Retinopatía Diabética/metabolismo , Células Endoteliales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fitoestrógenos/farmacología , Retina/efectos de los fármacos , Sirtuina 1/efectos de los fármacos , Animales , Diabetes Mellitus Experimental/metabolismo , Retinopatía Diabética/patología , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Glucosa/toxicidad , Humanos , Inflamación/metabolismo , Ratas , Retina/metabolismo , Retina/patología , Vasos Retinianos/citología , Sirtuina 1/metabolismo
9.
Free Radic Res ; 54(8-9): 629-639, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32924662

RESUMEN

Doxorubicin (DOX) acts as the cornerstone in multiple tumour chemotherapy regimens, however, its clinical application is often impeded due to the induction of a severe cardiotoxicity that eventually provokes left ventricular dysfunction and congestive heart failure. Coumestrol (CMT) is a common dietary phytoestrogen with pleiotropic pharmacological effects. The present study aims to investigate the role and mechanism of CMT on DOX-induced cardiotoxicity. Mice were intragastrically administrated with CMT (5 mg/kg/day) for consecutive 2 weeks and then received a single intraperitoneal injection of DOX (15 mg/kg) to mimic the clinical toxic effects after 8-day additional feeding. To verify the role of 5' AMP-activated protein kinase alpha (AMPKα), AMPKα2 global knockout mice were used. H9C2 cells were cultured to further validate the beneficial role of CMT in vitro. CMT administration notably ameliorated oxidative damage, cell apoptosis and cardiac dysfunction in DOX-treated mice. Besides, we observed that DOX-induced reactive oxygen species overproduction and cardiomyocyte apoptosis were also reduced by CMT incubation in H9C2 cells. Mechanistically, CMT activated AMPKα and Ampkα deficiency abolished the beneficial effects of CMT in vivo and in vitro. Finally, we proved that protein kinase A (PKA) was required for CMT-mediated AMPKα activation and cardioprotective effects. CMT activated PKA/AMPKα pathway to alleviate DOX-induced oxidative damage, cell apoptosis and cardiac dysfunction. Our findings provide a promising therapeutic agent for cancer patients receiving anthracycline chemotherapy.


Asunto(s)
Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Apoptosis/efectos de los fármacos , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Cumestrol/uso terapéutico , Doxorrubicina/efectos adversos , Fitoestrógenos/uso terapéutico , Animales , Cardiotoxicidad/patología , Cumestrol/farmacología , Masculino , Ratones , Fitoestrógenos/farmacología
10.
Daru ; 28(1): 97-108, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31912375

RESUMEN

BACKGROUND: Phytoestrogens are plant compounds that are structurally similar to estrogen and that possess anti-cancer properties. Previous studies have reported that coumestrol, daidzein and genistein could induce cell death by reducing Annexin A1 protein in leukemic cell lines. Annexin A1 (ANXA1) is involved in cell progression, metastasis, and apoptosis in several types of cancer cells. The present study sought to investigate if the effects of phytoestrogens on apoptosis, cell cycle arrest and phagocytosis in ANXA1-knockdown leukemic cells are mediated through ANXA1 or occurred independently. METHODS: Transfection of ANXA1 siRNA was conducted to downregulate ANXA1 expression in Jurkat, K562 and U937 cells. Apoptosis and cell cycle assays were conducted using flow cytometry. Western blot was performed to evaluate ANXA1, caspases and Bcl-2 proteins expression. Phagocytosis was determined using hematoxylin and eosin staining. RESULTS: The expression of ANXA1 after the knockdown was significantly downregulated in all cell lines. Genistein significantly induced apoptosis associated with an upregulation of procaspase-3, -9, and - 1 in Jurkat cells. The Bcl-2 expression showed no significant difference in Jurkat, K562 and U937 cells. Treatment with phytoestrogens increased procaspase-1 expression in Jurkat and U937 cells while no changes were detected in K562 cells. Flow cytometry analysis demonstrated that after ANXA1 knockdown, coumestrol and genistein caused cell cycle arrest at G2/M phase in selected type of cells. The percentage of phagocytosis and phagocytosis index increased after the treatment with phytoestrogens in all cell lines. CONCLUSION: Phytoestrogens induced cell death in ANXA1-knockdown leukemia cells, mediated by Annexin A1 proteins. Graphical abstract.


Asunto(s)
Anexina A1/genética , Cumestrol/farmacología , Genisteína/farmacología , Isoflavonas/farmacología , Fitoestrógenos/farmacología , Anexina A1/metabolismo , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Células Jurkat , Células K562 , Leucemia/genética , Leucemia/metabolismo , Fagocitosis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , Células THP-1 , Células U937
11.
J Nutr Biochem ; 76: 108300, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31812908

RESUMEN

Coumestrol is a dietary phytoestrogen with estrogen-mimicking characteristics. This study investigated the molecular mechanisms of antiobesity effects of coumestrol. Two weeks of coumestrol treatment reduced body weight and improved glucose tolerance of high-fat diet (HFD)-fed mice. Notably, coumestrol treatment reduced adiposity but expanded brown adipose tissue mass. In addition, coumestrol treatment induced up-regulation of brown adipocyte markers and lipolytic gene expression in adipose tissue. Mechanistically, coumestrol induced an increase in mitochondrial contents of brown adipose tissue, which was associated with up-regulation of adenosine monophosphate-activated protein kinase and sirtuin 1. In vitro knockdown of estrogen receptor 1 inhibited the effect of coumestrol on brown adipogenic marker expression, increase in mitochondrial contents and oxygen consumption rate in brown adipocytes. Furthermore, lineage tracing of platelet-derived growth factor receptor A-positive (PDGFRA+) adipocyte progenitors confirmed increased levels of de novo brown adipogenesis from PDGFRA+ cells by coumestrol treatment. In conclusion, our results indicate that coumestrol has antiobesity effects through the expansion and activation of brown adipose tissue metabolism.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Cumestrol/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Adipocitos Beige/efectos de los fármacos , Adipogénesis , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Peso Corporal , Dieta Alta en Grasa , Prueba de Tolerancia a la Glucosa , Lipólisis , Masculino , Ratones , Ratones Endogámicos C57BL , Fitoestrógenos/farmacología
12.
Cancer Epidemiol Biomarkers Prev ; 29(2): 500-508, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31826911

RESUMEN

BACKGROUND: Very few previous studies have examined the relationship between thyroid cancer risk and intake of phytoestrogens (PE); furthermore, these studies have reached inconsistent results. METHODS: We analyzed data from a population-based case-control study in Connecticut from 2010 to 2011, including 387 histologically confirmed thyroid cancer cases and 433 population-based controls, with compound data available concerning specific PEs. Multivariate unconditional logistic regression models were used to estimate the associations between specific PEs and the risk of thyroid cancer, adjusting for potential confounders. RESULTS: An elevated risk of thyroid cancer was associated with moderate to high levels of coumestrol intake [OR = 2.48, 95% confidence interval (CI), 1.39-4.43 for 40-80 µg/day; OR = 2.41, 95% CI, 1.32-4.40 for 80-130 µg/day; and OR = 2.38, 95% CI, 1.26-4.50 for >200 µg/day compared with <40 µg/day], and the main elevation in risk appeared among microcarcinomas (≤1 cm). A decreased risk of papillary macrocarcinomas (>1 cm; OR = 0.26, 95% CI, 0.08-0.85 for 1,860-3,110 µg/day compared with <760 µg/day) was associated with moderate genistein intake among women. CONCLUSIONS: Our study suggests that high coumestrol intake increases the risk of thyroid cancer, especially microcarcinomas, whereas moderate amounts of genistein intake appear to be protective for females with thyroid macrocarcinomas. IMPACT: The study highlights the importance of distinguishing between microcarcinomas and macrocarcinomas in future research on the etiology of thyroid cancer.


Asunto(s)
Encuestas sobre Dietas/estadística & datos numéricos , Conducta Alimentaria , Fitoestrógenos/administración & dosificación , Neoplasias de la Tiroides/epidemiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Connecticut/epidemiología , Cumestrol/administración & dosificación , Cumestrol/efectos adversos , Femenino , Genisteína/administración & dosificación , Genisteína/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Fitoestrógenos/efectos adversos , Factores Protectores , Factores de Riesgo , Neoplasias de la Tiroides/etiología , Neoplasias de la Tiroides/prevención & control , Adulto Joven
13.
Int J Dev Neurosci ; 79: 86-95, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31693927

RESUMEN

INTRODUCTION: Neonatal Hypoxia-Ischemia (HI) is a major cause of morbidity and mortality, and is frequently associated with short and long-term neurologic and cognitive impairments. The HI injury causes mitochondrial damage leading to increased production of reactive oxygen species (ROS). Phytoestrogens are non-steroidal plant substances structurally and functionally similar to estrogen. Coumestrol is a potent isoflavonoid with a protective effect against ischemic brain damage in adult rats. Our aim was to determine if coumestrol treatment following neonatal HI attenuates the long-term cognitive deficits induced by neonatal HI, as well as to investigate one possible mechanism underlying its potential effect. METHODS: On the 7th postnatal day, male Wistar rats were submitted to the Levine-Rice HI model. Intraperitoneal injections of 20 mg/kg of coumestrol, or vehicle, were administered immediately pre-hypoxia or 3 h post-hypoxia. At 12 h after HI the mitochondrial status and ROS levels were determined. At 60th postnatal day the cognitive deficits were revealed in the Morris water maze reference and working spatial memories. Following behavioral analysis, histological assessment was performed and reactive astrogliosis was measured by GFAP expression. RESULTS: Results demonstrate that both pre- and post-HI administration of coumestrol were able to counteract the long-term cognitive and morphological impairments caused by HI, as well as to block the late reactive astrogliosis. The pre-HI administration of coumestrol was able to prevent the early mitochondrial dysfunction in the hippocampus of injured rat pups. CONCLUSION: Present data suggest that coumestrol exerts protection against experimental neonatal brain hypoxia-ischemia through, at least in part, early modulation of mitochondrial function.


Asunto(s)
Encéfalo/efectos de los fármacos , Cognición/efectos de los fármacos , Disfunción Cognitiva/tratamiento farmacológico , Cumestrol/farmacología , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Encéfalo/metabolismo , Disfunción Cognitiva/metabolismo , Cumestrol/uso terapéutico , Hipoxia-Isquemia Encefálica/metabolismo , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Mitocondrias/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Fitoestrógenos/farmacología , Fitoestrógenos/uso terapéutico , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
14.
Int J Pharm ; 562: 86-95, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30885651

RESUMEN

Coumestrol is a polyphenol with promising therapeutic applications as phytoestrogen, antioxidant and potential cancer chemoprevention agent. The presence of two hydroxyl groups on its chemical structure, with orientation analogous to estradiol, is responsible of both, its antioxidant capacity and its estrogenic activity. However, several studies show that the interaction of polyphenols with food and plasma proteins reduces their antioxidant efficacy. We studied the interaction of coumestrol with bovine serum albumin protein (BSA) by fluorescence spectroscopy and circular dichroism techniques, and the effect of this interaction on its antioxidant activity as a hydroxyl radical scavenger. In addition, coumestrol antioxidant capacity profile using different assays (DPPH, ORAC-FL and ORAC-EPR) was studied. To explain its reactivity we used several methodologies, including DFT calculations, to define its antioxidant mechanism. Coumestrol antioxidant activity unveiled interesting antioxidant properties. BSA interaction with coumestrol reduces significantly photolytic degradation in several media thus preserving its antioxidant properties. Results suggest no significant changes in BSA structure and activity when interacting with coumestrol. Furthermore, this interaction is stronger than for other phytoestrogens such as daidzein and genistein. Considering our promising results, we reported for the first time the fabrication and characterization of coumestrol-loaded albumin nanoparticles. The resulting spherical and homogeneous nanoparticles showed a diameter close to 96 nm. The coumestrol incorporation efficiency in BSA NPs was 22.4%, which is equivalent to 3 molecules of coumestrol for every 10 molecules of BSA.


Asunto(s)
Antioxidantes/química , Cumestrol/química , Portadores de Fármacos/química , Nanopartículas/química , Fitoestrógenos/química , Albúmina Sérica Bovina/química , Radical Hidroxilo/química
15.
Environ Sci Pollut Res Int ; 25(32): 32346-32357, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30229492

RESUMEN

Advanced oxidation processes have become increasingly important to treat non-biodegradable compounds entering environmental waters. In recent decades, water-soluble metallophthalocyanines have been shown to catalyse H2O2-containing oxidation reactions through the production of unique reactive species, nucleophilic metal-peroxo complexes. Few reports in the literature have examined water insoluble metallophthalocyanines (MPc). The oxidative catalytic activity of water insoluble manganese- and iron-phthalocyanine (MnPc, FePc) at pH 7 has been shown through the decolourisation of methylene blue and removal of bisphenol A. These studies expand on this previous study, exploring the catalytic activity of a range of metallophthalocyanines catalysts under both acidic and neutral conditions. FePc, while only active under neutral conditions, was the best performing catalyst. This activity was significantly improved upon by the addition of acetonitrile as a co-solvent, as well as increasing the ratio of H2O2 to catalyst. MnPc was catalytically active at both pH 3 and 7. FePc and MnPc catalysts showed the ability to remove bisphenol A in the presence of dam water. Reaction rates were reduced for bisphenol A removal with FePc as a catalyst but were unchanged in the presence of MnPc. The removal of 17ß-estradiol, estrone, and coumestrol was successfully demonstrated, with greater than 96% removal of all tested EDC's achieved. This is the first reported study showing the removal of the phytoestrogen, coumestrol. Even though considerably lower concentrations of costly catalysts and oxidation reagents were used in our work, the removal extent of EDC's by the MPc-catalysed oxidation reactions achieved here compares favourably with literature.


Asunto(s)
Disruptores Endocrinos , Peróxido de Hidrógeno/química , Indoles/química , Hierro/química , Manganeso/química , Compuestos Organometálicos/química , Purificación del Agua/métodos , Compuestos de Bencidrilo/análisis , Catálisis , Cumestrol/análisis , Disruptores Endocrinos/análisis , Estradiol/análisis , Estrona/análisis , Compuestos Ferrosos/química , Concentración de Iones de Hidrógeno , Isoindoles , Oxidantes/química , Oxidación-Reducción , Fenoles/análisis , Fitoestrógenos/análisis , Contaminantes Químicos del Agua/análisis
16.
Eur J Pharm Sci ; 119: 179-188, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29665401

RESUMEN

Several beneficial effects on the skin have been reported for coumestrol (COU), such as protection against photoaging and improvement of skin elasticity and thickness in postmenopausal women. However no reports on the effect of COU on wound healing were found. Nevertheless, COU has low aqueous solubility, which is a crucial limitation for biological tests. The present study was designed as a two-step experiment to evaluate the wound healing effect of COU. First, we used fibroblasts and the experimental in vitro artificial wound model, scratch assay, to compare the effects of COU free, dissolved in dimethyl sulfoxide (DMSO) or Dulbecco's modified Eagle's medium (DMEM), or associated with hydroxypropyl-ß-cyclodextrin (HPßCD). The 50 µM (66.1%) and 10 µM (56.3%) COU/HPßCD association induced cell proliferation and migration in inflicted wounds. Subsequently, the in vivo wound healing experimental model (Wistar rats) revealed that COU/HPßCD incorporated into hypromellose (HPMC) hydrogel had similar efficacy in wound healing in comparison to the positive control (Dersani®), with the advantage that 50% wound healing was achieved within a shorter period. In summary, the results successfully demonstrated, for the first time, the wound healing effect of COU/HPßCD incorporated into HPMC hydrogel and describe the feasibility of the biological tests with the use of HPßCD instead DMSO.


Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/administración & dosificación , Antiinflamatorios/administración & dosificación , Cumestrol/administración & dosificación , Hidrogeles/administración & dosificación , Derivados de la Hipromelosa/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , 2-Hidroxipropil-beta-Ciclodextrina/química , Animales , Antiinflamatorios/química , Cumestrol/química , Hidrogeles/química , Derivados de la Hipromelosa/química , Masculino , Fitoestrógenos/administración & dosificación , Fitoestrógenos/química , Ratas Wistar , Piel/efectos de los fármacos , Piel/lesiones
17.
Molecules ; 23(4)2018 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-29597336

RESUMEN

The current study assesses the antioxidant effects of two similar isoflavonoids isolated from Pueraria lobata, coumestrol and puerarol, along with the cholinergic and amyloid-cascade pathways to mitigate Alzheimer's disease (AD). Antioxidant activity was evaluated via 1,1-diphenyl-2-picryhydrazyl (DPPH) and peroxynitrite (ONOO-) scavenging ability further screened via ONOO--mediated nitrotyrosine. Similarly, acetyl- and butyrylcholinesterase (AChE/BChE) and ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitory activities were assessed together with docking and kinetic studies. Considering DPPH and ONOO- scavenging activity, coumestrol (EC50 values of 53.98 and 1.17 µM) was found to be more potent than puerarol (EC50 values of 82.55 and 6.99 µM) followed by dose dependent inhibition of ONOO--mediated nitrotyrosine. Coumestrol showed pronounced AChE and BChE activity with IC50 values of 42.33 and 24.64 µM, respectively, acting as a dual cholinesterase (ChE) inhibitor. Despite having weak ChE inhibitory activity, puerarol showed potent BACE1 inhibition (28.17 µM). Kinetic studies of coumestrol showed AChE and BChE inhibition in a competitive and mixed fashion, whereas puerarol showed mixed inhibition for BACE1. In addition, docking simulations demonstrated high affinity and tight binding capacity towards the active site of the enzymes. In summary, we undertook a comparative study of two similar isoflavonoids differing only by a single aliphatic side chain and demonstrated that antioxidant agents coumestrol and puerarol are promising, potentially complementary therapeutics for AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Secretasas de la Proteína Precursora del Amiloide , Antioxidantes , Ácido Aspártico Endopeptidasas , Cumestrol , Simulación del Acoplamiento Molecular , Pueraria/química , Acetilcolinesterasa/química , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/química , Animales , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/química , Butirilcolinesterasa/química , Cumestrol/química , Cumestrol/aislamiento & purificación , Electrophorus , Proteínas de Peces/química , Caballos , Humanos
18.
Toxicol In Vitro ; 46: 19-28, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28986287

RESUMEN

Triple-negative breast cancer (TNBC) represents the highly aggressive subgroup of breast cancers with poor prognosis due to absence of estrogen receptor (ER). Therefore, alternative targeted therapies are required against ER-negative breast cancers. Coumestrol, a phytoestrogen inhibits cell growth of ER-negative breast cancer MDA-MB-231 cells; the exact mechanism has not yet been reported. Unlike normal cells, cancer cells contain elevated copper which play an integral role in angiogenesis. The current focus of the work was to identify any possible role of copper in coumestrol cytotoxic action against breast cancer MDA-MB-231 cells. Results demonstrated that coumestrol inhibited cell viability, induced ROS generation, DNA damage, G1/S cell cycle arrest, up-regulation of Bax and apoptosis induction via caspase-dependent mitochondrial mediated pathway in MDA-MB-231 cells. Further, addition of copper chelator, neocuproine and ROS scavenger, N-acetyl cysteine were ineffective in abrogating coumestrol-mediated apoptosis. This suggests non-involvement of copper and ROS in coumestrol-induced apoptosis. To account for coumestrol-mediated up-regulation of Bax and apoptosis induction, direct binding potential between coumestrol and Bax/Bcl-2 was studied using in silico molecular docking studies. We propose that coumestrol directly enters cells and combines with Bax/Bcl-2 to alter their structures, thereby causing Bax binding to the outer mitochondrial membrane and Bcl-2 release from the mitochondria to initiate apoptosis. Thus, non-copper targeted ROS independent DNA damage is the central mechanism of coumestrol in ER-negative MDA-MB-231 cells. These findings will be useful in better understanding of anticancer mechanisms of coumestrol and establishing it as a lead molecule for TNBC treatment.


Asunto(s)
Cumestrol/uso terapéutico , Fitoestrógenos/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Electrónica de Rastreo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno , Neoplasias de la Mama Triple Negativas/ultraestructura , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
19.
J Agric Food Chem ; 65(50): 11118-11124, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29189005

RESUMEN

During lactation, mammary epithelial cells (MECs) form the blood-milk barrier by less-permeable tight junctions (TJs) to prevent the leakage of milk components. Phytoestrogens affect the proliferation, differentiation, and apoptosis of MECs. However, it remains unclear whether phytoestrogens are involved in the blood-milk barrier. Therefore, we investigated the influence of phytoestrogens (coumestrol, genistein, and daidzein) by using an in vitro mouse-MEC-culture model. The results showed that coumestrol and genistein changed the expression of TJ proteins (claudins-3 and -4 and occludin), weakened barrier function, and reduced ß-casein production. Daidzein also weakened barrier function without inhibiting ß-casein production. Additionally, coumestrol and genistein induced apoptosis in MECs. These results indicate that phytoestrogens weaken the blood-milk barrier by directly affecting TJs and the cellular viability of lactating MECs in different ways.


Asunto(s)
Cumestrol/farmacología , Células Epiteliales/metabolismo , Genisteína/farmacología , Isoflavonas/farmacología , Glándulas Mamarias Animales/citología , Leche/metabolismo , Fitoestrógenos/farmacología , Uniones Estrechas/metabolismo , Animales , Caseínas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Epiteliales/citología , Femenino , Humanos , Lactancia , Glándulas Mamarias Animales/irrigación sanguínea , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos ICR , Uniones Estrechas/efectos de los fármacos
20.
Mol Hum Reprod ; 23(11): 786-802, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040664

RESUMEN

STUDY QUESTION: Does coumestrol inhibit proliferation of human placental choriocarcinoma cells? SUMMARY ANSWER: Coumestrol promotes cell death in the choriocarcinoma cells by regulating ERK1/2 MAPK and JNK MAPK signaling pathways and through disruption of Ca2+ and ROS homeostasis. WHAT IS KNOWN ALREADY: A number of patients who suffer from choriocarcinomas fail to survive due to delayed diagnosis or a recurrent tumor and resistance to traditional chemotherapy using platinum-based agents and methotrexate. To overcome these limitations, it is important to discover novel compounds which have no adverse effects yet can inhibit the expression of a target molecule to develop, as a novel therapeutic for prevention and/or treatment of choriocarcinomas. STUDY DESIGN, SIZE, DURATION: Effects of coumestrol on human placental choriocarcinoma cell lines, JAR and JEG3, were assessed in diverse assays in a dose- and time-dependent manner. PARTICIPCANTS/MATERIALS, SETTING, METHODS: Effects of coumestrol on cell proliferation, apoptosis (annexin V expression, propidium iodide staining, TUNEL and invasion assays), mitochondria-mediated apoptosis, production of reactive oxygen species (ROS), lipid peroxidation, glutathione levels and endoplasmic reticulum (ER) stress proteins in JAR and JEG3 cells were determined. Signal transduction pathways in JAR and JEG3 cells in response to coumestrol were determined by western blot analyses. MAIN RESULTS AND THE ROLE OF CHANCE: Results of the present study indicated that coumestrol suppressed proliferation and increased apoptosis in JAR and JEG3 cells by inducing pro-apoptotic proteins, Bax and Bak. In addition, coumestrol increased ROS production, as well as lipid peroxidation and glutathione levels in JAR and JEG3 cells. Moreover, coumestrol-induced depolarization of mitochondrial membrane potential (MMP) and increased cytosolic and mitochondrial Ca2+ levels in JAR and JEG3 cells. Consistent with those results, treatment of JAR and JEG3 cells with a Ca2+ chelator and an inhibitor of IP3 receptor decreased coumestrol-induced depolarization of MMP and increased proliferation in JAR and JEG3 cells. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: A lack of in vivo animal studies is a major limitation of this research. The effectiveness of coumestrol to induce apoptosis of human placental choriocarcinoma cells requires further investigation. WIDER IMPLICATIONS OF THE FINDINGS: Our results indicate that coumestrol induces apoptotic effects on placental choriocarcinoma cells by regulating cell signaling and mitochondrial-mediated functions, with a potential to impair progression of the cancer. STUDY FUNDING/COMPETING INTEREST(S): This research was supported by grants from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (No. HI15C0810 awarded to G.S. and HI17C0929 awarded to W.L.).


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Cumestrol/farmacología , Células Epiteliales/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Mitocondrias/efectos de los fármacos , Fitoestrógenos/farmacología , Apoptosis/genética , Calcio/agonistas , Calcio/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Corion/efectos de los fármacos , Corion/metabolismo , Corion/patología , Relación Dosis-Respuesta a Droga , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Glutatión/metabolismo , Humanos , Peroxidación de Lípido , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína Destructora del Antagonista Homólogo bcl-2/agonistas , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/agonistas , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA